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In this article we explore ways in which uncertainty can promote the need for 
proving. By uncertainty we refer to situations in which a person (or group of 
people) contemplates over a certain conjecture, without a sense of certitude 
whether it is valid or not and why it is or is not. A group of experienced 
secondary teachers participated in a workshop that introduced tasks aimed at 
creating such uncertainty. The workshop was documented and analyzed with 
respect to the uncertainty that emerged as the participants interacted with the 
tasks and with each other. The analysis points to the interplay between the sense 
of uncertainty, the search for certitude regarding mathematical phenomena, and 
the need to prove.  

BACKGROUND 

The importance of proof in mathematics education as a reflection of the 
centrality of proof in mathematics has been widely acknowledged by the 
mathematics education community. At the same time students and teachers 
encounter various difficulties with understanding and construction of 
mathematical proof (e.g. Healy & Hoyles, 2000; Mariotti, 2006). Some of these 
difficulties are rooted in students’ lack of understanding of the purpose of proof 
(Balachef, 1990). In Harel (2007) terms, the necessity principle is often violated 
with respect to proof and proving. One possible way to create instructional 
situations in which an intellectual need for proof arises intrinsically is to use 
tasks that evoke uncertainty and doubt (Zaslavsky, 2005).        

The role of uncertainty is particular critical in Dynamic Geometry Environments 
(DGE) (Hadas, Hershkowitz & Schwarz, 2000), which in many cases “provides 
students with strong perceptual evidence that a certain property is true” 
(Mariotti, 2006, p.193). Thus, once convinced by means of empirical evidence 
provided by DGE, students often don’t feel a need for additional validation in 
the form of deductive justification or proof.  

As Zaslavsky (2008) asserts, for teachers to gain appreciation of the potential of 
such uncertainty in raising the need to prove, they should engage in tasks that 
evoke uncertainty for them as learners and problem solvers. Designing such 
tasks that are closely connected to the secondary school mathematics curriculum 
yet challenging for secondary teachers is not a trivial undertaking. The purpose 
of this study is to articulate some design principles of such tasks and document 
their contribution in terms of evoking teachers' appreciation of and need for 
proving. 



 

THE STUDY 

Six geometry tasks were designed for the purpose of the study (Table 1). All are 
related to geometry problems that appear in the commonly used geometry 
textbooks for secondary students in Israel. These tasks were given to a group of 
six experienced secondary teachers, with a sound mathematical knowledge base. 
Our purpose was, first, to examine the extent to which these tasks evoke 
uncertainty; and then to study the processes involved in dealing with them, 
specifically with respect to teachers’ need to prove.  

Each task was presented as a sequence of actions carried out by a student 
followed by an observation he made based on these actions. The question the 
teachers were asked to address was whether the observed (mathematical) 
phenomenon is a coincidence or not, that is, whether it holds for any case or just 
for some cases. Note, that there was no explicit requirement to prove any claim. 
The intention of the designer was to focus teachers’ attention on the generality 
of the phenomenon, and hopefully to raise their need to form an assertion and 
convince themselves as well as each other by means of a proof or refutation. All 
six phenomena described in the tasks present observations that are not 
commonly addressed and have the potential of generating surprise and creating 
uncertainty with respect to the scope of the phenomena.  

Each task presents a possible phenomenon, three of which are imperative 
outcomes of the described situation (tasks # 2, 4 & 6), while the other three 
(tasks # 1, 3 & 5) are not imperative, thus, hold just for some cases; we have 
termed the latter “a coincidence”. The alternation of the tasks (coincidence, non-
coincidence) was intended to elicit and reinforce the sense of uncertainty.  

The tasks were presented to the teachers one after another in the same order that 
they appear here. Teachers worked in two groups or individually prior to the 
whole group discussion. The role of the facilitator was to navigate the 
discussion, summarize different points of view and pose questions.   

1. A student performed the following actions: in trapezoid 
ABCD he drew the bisectors of two angles adjacent to 
the small base BC. The bisectors met at a point F on the 
opposite base. The student detected that the length of 
the base AD is equal to the sum of the two sides, AB 
and DC.                                         Is this a coincidence? 
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2. A student performed the following actions: he took two 
quadrilaterals ABCD and PRST and placed one on top 
of the other in such way that the midpoints of their sides 
(K, L, M, and N) overlap. The student checked and 
found out that the quadrilaterals have the same areas.        
Is this a coincidence? 
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3. A student performed the following actions: he divided a 
segment AC into three equal parts with points B and E. 
Then he constructed a parallelogram BDFE. He 
sketched the intersection point G of rays AD and CF, 
and found out that they are perpendicular.                      
Is this a coincidence? 
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4. A student performed the following actions: on the side 
CD of a parallelogram ABCD he chose an arbitrary 
point E. He marked the intersection of AE and BC by F. 
He measured the areas of the triangles BCE and DEF 
and found that the areas are equal. Is this a coincidence? F
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5. A student performed the following actions: in an 
isosceles triangle ABC (AB=AC) he drew segments of 
equal length: BD and CE. He marked the mid-points of 
these segments as G and H respectively. The student 
examined the quadrilateral DEGH and found out that 
it’s a square.                                   Is this a coincidence? 
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6. A student performed the following actions: On the 
diagonal AC of a parallelogram ABCD he chose an 
arbitrary point M. He drew two segments through M: 
GF which intersects the sides AB and CD; and EH 
which intersects the sides AD and BC of the 
parallelogram. The student found out that the segment 
EF is parallel to the segment GH.   Is this a coincidence?
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Table 1: Six tasks that were used in the study  

The whole session (two hours) was videotaped and transcribed for further 
analysis. The data was analyzed according to two main criteria: 1. utterances 
that indicate uncertainty encounters; and 2. evidence for an evoked need for 
proving.  

FINDINGS 

We focus now on task # 4 (see Table 1). In this task a hypothetical student 
begins with a parallelogram and constructs two triangles DEF and BEC related 
to it, which, he claims, have the same area. The construction seemed arbitrary to 
the teachers, who appeared to have no initial feeling whether the result is 
accidental or not, and no intuition to build on. Thus, they were uncertain 
regarding whether this is a coincidence or not. 

Teachers’ initial approach was to try to prove that any such triangles have equal 
areas. For this they introduced parameters and expressed a relationship that 
would hold if triangles DEF and BEC indeed had equal areas (Figure 1).  
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If triangles DEF and BEC are of equal 
areas, then:  

(*)  xHyh     or   
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Figure 1: Teachers' representation of the necessary condition for triangles DEF 
and BEC to be equivalent (i.e., of equal area). 

Teachers didn’t know how to proceed further, since they couldn’t think of any 
explanation why this property should hold. This reinforced their initial feeling of 
uncertainty. In Zaslavsky’s (2005) terms, they manifested both lack of 
immediate available tools for determining how to proceed and lack of guts 
feeling, which triggered uncertainty due to an unknown path.    

The following excerpt illustrates teachers’ growing perplexity.     

Stella: [referring to (*) which she wrote on the board, see Figure 1]…Is it always 
true? I don’t think so. Let’s say, I don’t have a feeling that it’s always true. 

Debora: I started to think that it’s not true at all. … I couldn’t find anything certain.  

Facilitator: Does it mean that you couldn’t show that it’s false? 

Debora: No [I couldn’t]. 

Natalie: The real question is why should it be true?  

Dafna: I don’t see any reason for that!   

Note, that even though it was explicitly stated in the task that the student has 
found by measuring that the triangles have equal areas, teaches started to doubt 
even the possibility of that, since they were not able to either confirm or refute 
this claim (see Debora’s remark). This indicates uncertainty of non-readily 
verifiable outcomes type (Zaslavsky, 2005).  

At this point in the discussion teachers reached an impasse. In order to proceed 
further the facilitator used a DGE demonstration. This demonstration (prepared 
in advance in the Geometer’s Sketchpad environment) presented the dynamic 
figure related to the task, showing the measures of areas of the triangles DEF 
and BEC. The facilitator used the dragging function of DGE to show that the 
triangles always have the same areas. The following excerpt illustrates the level 
of surprise that was obtained by this demonstration.  

Facilitator: Here. This measures the areas. Now I’ll drag the point E…. 

Natalie: Wow!  

Debora: It’s true! It’s true! 

Ronit: We should applaud.  

Facilitator: Can you see the values (of areas)? 



 

Natalie: It doesn’t matter! The areas are equal! … This means that the equation 
we’ve obtained earlier (*) has to hold…. But why?    

DGE demonstration helped remove the uncertainty associated with respect to the 
possibility that the triangles could have the same area, as Natalie stated later: 
“The computer convinced me”. In addition, it provided an empirical basis to 
conjecture that all triangles constructed in such way are of equal areas. But the 
uncertainty towards the reasons underlying this phenomenon remained, and 
evoked new enthusiastic attempts to prove that the phenomenon is also 
imperative, in order to understand why.  

This appeared to be a non-trivial task for teachers. They kept expressing their 
astonishment after each unsuccessful attempt to prove it, by such utterances: 
“Amazing!”; “It seemed so unlikely before [DGE demonstration]”; “I tried to move 
point E to the other side, but I still can’t see it”, and their urge to prove it: “It’s so 
intriguing!”, “Why is this property so imperative? ... Apparently all the triangles 
should have it!”; “Why should it be so?”    

Finally, Dafna suggested a way to prove the equivalence of the triangles and 
presented her idea of the proof to the whole group.  

The area of a triangle ADF equals half of the area of the parallelogram ABCD, 
since the triangle’s base is a side AD, and its’ height is the distance between two 
parallel sides AD and BC. By similar arguments, the sum of the areas of triangles 
AED and BEC is also equal to half of the area of ABCD. Thus the areas of the 
triangles BEC and DEF are both equal to half of the area of the ABCD minus the 
area of the triangle AED (Figure 1).  

Teachers were very impressed by Dafna’s proof, especially since in addition to 
showing that the triangles can indeed have the same areas, it also provided 
arguments explaining why this property is imperative, that is, holds for any case.  

CONCLUSION 

In this article we describe a set of tasks that were designed to evoke uncertainty. 
We provide a closer look at one such task, examining the processes involved in 
coping with it by a group of secondary teachers.  

The design of all six tasks turned out to be effective in eliciting a strong sense of 
uncertainty even for experienced mathematics teachers, with respect to the 
possible existence of a (mathematical) phenomenon, its scope, and the 
underlying reasons for its existence. Note that the uncertainty evoked by the task 
was so intense, that in some cases it led teachers to doubt the observation stated 
in the task. Even when DGE demonstrations resolved uncertainty regarding the 
existence and scope of the phenomenon, teachers were still left with a strong 
sense of uncertainty regarding why it occurs. This, in turn, was a driving force 
for proving, as illustrated by Dafna's comment: “You can see the overwhelming 
emotions that it [DGE demonstration] evoked in us: the curiosity to find out the reason 
at any cost”.   



 

It’s important to keep in mind that the task had no explicit requirement to prove. 
Thus, the emergence of teachers’ strong intrinsic intellectual need (Harel, 2007) 
to prove the conjecture implied by the task can be attributed to the uncertainty 
evoked by it.  

Teachers have openly expressed their satisfaction and excitement that they have 
resolved the uncertainty and found the proof. In their own words, they have 
expressed a sense of gain of a “valuable experience” from dealing with 
uncertainty in the way they did. The added value of this activity for them was 
their expressed recognition of the potential of tasks evoking uncertainty in 
creating similar processes for their students. 
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